Likelihood-based confidence intervals for a parameter with an upper or lower bound.
نویسندگان
چکیده
The precision of estimates in many statistical models can be expressed by a confidence interval (CI). CIs based on standard errors (SE) are common in practice, but likelihood-based CIs are worth consideration. In comparison to SEs, likelihood-based CIs are typically more difficult to estimate, but are more robust to model (re)parameterization. In latent variable models, some parameters may take on values outside of their interpretable range. Therefore, it is desirable to place a bound to keep the parameter interpretable. For likelihood-based CI, a correction is needed when a parameter is bounded. The correction is known (Wu & Neale, 2012), but is difficult to implement in practice. A novel automatic implementation that is simple for an applied researcher to use is introduced. A simulation study demonstrates the accuracy of the correction using a latent growth curve model and the method is illustrated with a multilevel confirmatory factor analysis.
منابع مشابه
Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean
A Poisson distribution is well used as a standard model for analyzing count data. So the Poisson distribution parameter estimation is widely applied in practice. Providing accurate confidence intervals for the discrete distribution parameters is very difficult. So far, many asymptotic confidence intervals for the mean of Poisson distribution is provided. It is known that the coverag...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملBootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution
This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...
متن کاملImplementing intersection bounds in Stata
We present the clrbound, clr2bound, clr3bound, and clrtest commands for estimation and inference on intersection bounds as developed by Chernozhukov et al. (2013). The commands clrbound, clr2bound, and clr3bound provide bound estimates that can be used directly for estimation or to construct asymptotically valid confidence sets. The command clrbound provides bound estimates for one-sided lower ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structural equation modeling : a multidisciplinary journal
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2017